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bstract

he dependence of the coefficient of thermal expansion (CTE) from the texture description in porous ceramics is presented, in the example of
ordierite. The texture description usually adopted for industrial ceramics, the I-ratio, is compared with the more rigorous approach of neutron
iffraction (ND) pole figures. It is shown that the use of the I-ratio represents a coarse approximation of the complete materials texture and it yields
ifferent values of the texture coefficients used to model the CTE from lattice expansion data (according to the integrity function). For extruded

nd fired samples, it is shown that if for the transverse direction all approximations are equivalent, for the axial CTE the usual I-ratio values bring
ontradictory simulation results. On the contrary, the use of ND pole figures and of the Popa–Bruno method allows predicting sensible CTE values,
onsistent with other physical properties, such as Young’s modulus.

2010 Elsevier Ltd. All rights reserved.

te; Int

p
t
i
h
q
t

I

1

eywords: Neutron and X-ray methods; Thermal expansion; Texture; Cordieri

. Introduction

Numerical simulations of thermo-mechanical properties have
owadays become a recognized path to understanding, predict-
ng and improving of physical properties of ceramics. Particular
argets for those calculations are materials for membranes and
atalyst substrates applications, since they consist of highly
nisotropic microcrystals. The simulation of bulk coefficient
f thermal expansion (CTE) requires the input of microcrystal
rientations in the ceramic body, besides the composition, and
f the (generally anisotropic) intrinsic properties of the crystal
hases. According to the constitutive model of polycrystalline
aterial, the bulk CTE equals the weighted sum of the crystal

xial CTE’s where the weights include texture coefficients. The
atter depend on the average orientation of crystals along the
irection of thermal expansion (see for example [1–3]).
The current method for quick texture characterization of
ndustrial ceramics uses X-ray diffraction (XRD).4 In the case
f cordierite the texture is evaluated in the most simple and

∗ Corresponding author. Tel.: +1 607 9741421; fax: +1 607 9742383.
E-mail address: brunog@corning.com (G. Bruno).
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egrity factor

ractical way by a single value named I-ratio. The value equals
he intensity of X-ray diffraction (XRD) reflection 1 1 0 normal-
zed by the intensity sum of 1 1 0 and 0 0 2 reflections of the
exagonal form (indialite). In other words, this quantity aims at
uantifying the amount of basal oriented c-grains with respect
o the basal + axial orientations, i.e.

ratio = I110

I002 + I110
(1)

We notice two facts:

. The intensity sum of 3 1 0 and 0 2 0 reflections, instead of the
1 1 0, should be taken for the most common orthorhombic
cordierite; however, we could also define the I-ratio as

ILratio = I310

I002 + I310
(1′)
since the intensity of 3 1 0 peak is not affected by the 0 2 0
peak.

. Lachman4 used the peak heights for definitions (1) and (1′),
while Bubeck5 used the integrated intensity (peak areas Ahkl)

dx.doi.org/10.1016/j.jeurceramsoc.2010.10.005
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of 3 1 0 plus 0 2 0 peaks:

IBratio = A310 + A020

A002 + A020 + A310
(1′′)

(we attach labels L for Lachman and B for Bubeck to the two
definitions).

However, the peak width is a smoothly varying function of
he Bragg angle 2α (note that we use α to avoid confusion with
he Euler polar angle, �). Consequently, since the peaks 3 1 0,
2 0 and 0 0 2 are near each other, we can assume their width to
e the same and write

B
ratio∼

I310 + I020

I002 + I020 + I310
(1′′′)

hereby the peak heights Ihkl are used.
Both approaches are equivalent, but the latter practice is more

igorous, since the peak area represents the whole contribution
f the grains oriented in the direction under investigation.

According to the crystallographic databases (PDF file
9–1488, see [6]), the intensities of the three peaks in a variable
lit geometry (which we use for the XRD measurements) are:

310 = 28; I020 = 14; I002 = 14;

aking the definition (1′) would give for a randomly oriented
owder reference Ipowder = 2/3, while taking the sum of the 3 1 0
nd 0 2 0 peaks (or the integrated intensities), definitions (1′′)
r (1′′′), we would have Ipowder = 3/4.

The practical convenience of this definition lies in that the
wo peaks are located around the same Bragg angle 2α∼ 19◦ in
n X-ray diffraction pattern acquired for Cordierite with conven-
ional Cu anode. The I-ratio value provides information about the
mount of a- and b-axis contribution to the CTE in the specific
ample direction of XRD inspection.

As stated in [4], the exact physical meaning can be addressed
o the following cases: an Iratio = 0 (I110 = 0) shows that all
rystals are oriented with their c-axes perpendicular to sample
urface and Iratio = 1 (I002 = 0) denotes that there are no crystals
ith c-axis perpendicular to the sample surface.
When obtaining intermediate values, the I-ratio has been

owever erroneously used as an absolute texture metric. For
xample, Bubeck [5] used the I-ratio measured at various loca-
ions of honeycomb structures as weights (texture coefficients)
or the calculation of the axial and radial CTEs. Estimated val-
es were found at 200% the measured values. Such a mismatch
ould be related to the effect of thermal microcracking due to
nisotropy of the crystallographic CTE [1], but certainly depends
n the failure of the I-ratio to describe the fraction of oriented
rystallites.

Indeed, we will see that several factors render the I-ratio only
qualitative description of the preferred orientation: for exam-
le, the scanty X-ray penetration depth and the variation of the
rystal orientation as a function of depth in the walls could play

significant role in the assessment of the sample texture by the

-ratio method.
A rigorous mathematical method for averaging local physi-

al properties using the crystallographic texture of anisotropic
n Ceramic Society 31 (2011) 281–290

olycrystalline materials has been proposed by Popa [7] for the
alculation of average strain (stress) and stiffness. In that work,
he material texture is given by the fractional density of crystal
rientations or orientation distribution function (ODF) versus
he Euler angles, which relate the crystal coordinate system to
hat of the laboratory.

Bruno and Vogel [3] derived analytically the texture coef-
cients for fiber texture of transversely isotropic cordierite
rystals (a = b /= c). The fiber texture (axially symmetric distri-
ution of the c-axis around the extrusion direction) was derived
rom pole figures obtained by neutron diffraction experiments
n honeycomb and compact cordierite specimens.

The purpose of the work is to discuss the limitations of
he I-ratio approach, compare the results of texture coefficients
erivation from I-ratio and pole figure data, and observe their
mpact on the calculation of the radial and axial CTE in porous
oneycomb ceramic material. We will see that the correct deter-
ination of the texture coefficients is capital for any model to

pproach the measured CTE values and therefore be predictive.
s a test, the Turner’s model [2], as modified by Efremov [1],
ill be used and compared to previous results.

. Experimental details and theoretical approach

.1. Materials and methods

Some honeycomb porous extruded cordierite was produced
t Corning Inc. by sintering a mixture of talc, alumina, kaolin
nd silica at temperatures in excess of 1400 ◦C. This batch
as characterized by Neutron and X-ray diffraction. The

pecimen was cut into cellular bars of dimensions about
2 mm × 12 mm × 30 mm for the ND and the XRD tests and
nto bars of about 5 mm × 5 mm × 50 mm for conventional
ilatometry. Neutron diffraction experiments were run at the
ANSCE, LANL, NM, USA on the instrument HIPPO (see

3,8]). X-ray diffraction experiments were run at the X-ray
aboratory of Corning Inc., Sullivan Park, Corning, NY, USA,
n a Panalytical X’Pert diffractometer equipped with Cu K�
node. Complementarily, standard dilatometry experiments
ere run on a Neztsch DL402 single pushrod dilatometer at
orning SAS, CETC, Avon, France.

.2. Theoretical considerations

.2.1. Limitations of the I-ratio approach
In spite of its convenience for industry, the I-ratio approach

as certain limitations.

1)- As seen in the introduction, the I-ratio corresponding to
a random orientation distribution would change accord-
ing to the definition and the crystallographic database we
use. Moreover, experimental values reported in the liter-
ature for isotropic powder samples are different (0.664

is obtained in [4], 0.75 is reported in [5]) if we use
peak height or area. The different diffraction angle for
a and b-axes (1 1 0 line, 2α∼ 18.15◦) and c-axis (0 0 2
line, 2α∼ 19.1◦) may also play a role, if absorption and
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ig. 1. The nomenclature used for the I-ratio determination by X-ray diffraction.

polarization factors are not properly taken into account
[9,10].

In order to avoid the limitation, it will be shown below
that we suggest a formula for calibration of measured I-
ratio, assuming the measured powder is purely random
oriented. Calibration can be done for any value of the
theoretical powder I-ratio value.

2)- X-ray Cu K� penetration depth in porous cordierite is lim-
ited to a thin layer of about 10 �m. This would be sufficient
for texture inspection only in the case, where the layer per-
pendicular to the investigated direction could adequately
represent volume orientations. However, this depth is not
enough to characterize most of the cellular (honeycomb)
sample directions (see definition in Fig. 1), due to the sig-
nificant difference of crystal alignment at the surface and
inside the core of a wall [4,5]. On the contrary, we would
need a meaningful volume average of the microscopic prop-
erties, if we want to extract macroscopic properties (such
as CTE or Young’s modulus) via models. This is why the
use of neutrons (or high energy synchrotron radiation) as a
probe for texture analysis yields a significant advantage:
since the measured volume can be of the order of sev-
eral cm3, the statistical average of microscopic properties
(such as strain or crystal texture) can be used to extract
macroscopic properties (such as stiffness or CTE).

3)- A thorough description of the crystallographic texture or a
polycrystal (or the so-called orientation distribution func-
tion, ODF) cannot be done using just two/three reflections
(3 1 0, 0 2 0 and 0 0 2) [11]. Consequently, the I-ratio is not
representative of the complete ODF, as most of the crystal
population does not contribute to the I-ratio value. This is
particularly true if XRD is carried out, because the statis-
tical ensemble of grains involved in the experiment could
be very small.

Whereas the first limitation related to interpretation of mea-
ured I-ratio can be resolved as shown in the next section, the

ther two cannot be overcome, due to simple physical reasons.

Instead, we will see that pole figures, as obtained by neutron
iffraction, yield a meaningful statistical average, thanks to the
igh penetration depth of neutrons. Moreover, measurements on

A
c
s

ig. 2. Vc as a function of the measured I-ratio for different I-powder values of
/3 (dashed line), 0.65 (present work, solid line) and 0.75 (value found in [5],
ash-dotted line).

everal Bragg peaks yield more complete information about the
rystal orientation distributions around the sample axes of inter-
st, and therefore allow calculating correct averages of physical
uantities.

.2.2. Texture coefficients derivation from I-ratio
The I-ratio value obtained from XRD experiments, currently

sed in industrial applications for the description of cordierite
exture, is given by Eq. (1) or (1′).

On the basis of the theoretical ratio, we developed a relation
etween the measured Iratio, that of a powder (Ipowder) and the
exture weight to insert in current models, which we call the
exture coefficient Vc in the following. The relation reads

c = 1 − Iratio

1 − (
2Ipowder − 1/Ipowder

) · Iratio
(2)

Fig. 2 shows the variation of Vc as a function of the I-ratio
or a solid sample when Ipowder equals 2/3 (dashed line), 0.65
solid line), and 0.75 (dash-dot line). The first value corresponds
o the use of definition (1′), the latter value has been reported by
ubeck5 and corresponds to the use of the 3 1 0, 0 2 0 and 0 0 2
eaks (areas or heights).

The meaning of Eq. (2) is the following: for a correct compar-
son of the I-ratio values obtained in different experiments one
as to calibrate these values by referring them to the experimen-
al I-ratio of a powder, supposed to have isotropic orientation.
s mentioned above, we can calibrate the measured I-ratio to

heoretical values of 2/3 (according to [4]) and 3/4 (according
o [5]). We therefore get in the two cases:

Ical(Imeas, Ipowder):=
2 · ((1/Ipowder) − 1) · Imeas

1 − (3 − (2/Ipowder)) · Imeas Ithratio = 2/3

Ical(Imeas, Ipowder):=
3 · ((1/Ipowder) − 1) · Imeas

1 − (4 − (3/Ipowder)) · Imeas Ithratio = 3/4
(3)

The texture coefficient can then be calculated by means of
q. (2) in both cases.
The details of the derivation of Eqs. (2) and (3) are given in
ppendix A. Incidentally, we note that Bubeck [5] implicitly

alibrated his I-ratio values, by referring the CTE to different
amples and extrapolating to axial and radial mixtures.
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θ polar angle, given by

I (θ) = π

2
· exp

[
−1

2
·
(
θ

�θ

)2
]

+ I0 (13)

Table 1
Results of XRD experimental and calibrated I-ratio.

Iratio Tangential Radial Axial Ipowder
84 A.M. Efremov et al. / Journal of the Eu

.2.3. Texture coefficients derivation from pole figures

.2.3.1. The texture coefficients of a grain. The (thermal) strain
ensor of an orthotropic grain in its own coordinate system (a,
, c) is given by

g (εa, εb, εc) :=

⎛
⎜⎝
εa 0 0

0 0 0

0 0 0

⎞
⎟⎠ +

⎛
⎜⎝

0 0 0

0 εb 0

0 0 0

⎞
⎟⎠

+

⎛
⎜⎝

0 0 0

0 0 0

0 0 εc

⎞
⎟⎠ =

⎛
⎜⎝
εa 0 0

0 εb 0

0 0 εc

⎞
⎟⎠ (4)

The expression of this tensor in the laboratory system can be
xpanded as a sum of contributions transformed according to
he tensorial law of transformation using the Euler angles ψ, θ,

(see Appendix B), i.e.

(ψ, θ, φ, εa, εb, εc)

:=T (ψ, θ, φ) · εg (εa, εb, εc) · T T (ψ, θ, φ)

= vaεa + vbεb + vcεc (5)

The grain contribution to the texture coefficients are given by

va (εa, εb, εc) = ε (ψ, θ, φ, 1, 0, 0)

vb (εa, εb, εc) = ε (ψ, θ, φ, 0, 1, 0)

vb (εa, εb, εc) = ε (ψ, θ, φ, 0, 0, 1)

(6)

One can verify that the sum of texture coefficients of a single
rain equals 1 (see details in Appendix B):

a (εa, εb, εc) + vb (εa, εb, εc) + vb (εa, εb, εc)

=

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ (7)

.2.3.2. The average texture coefficient in polycrystalline mate-
ials. In general, the average of a physical quantity weighted
y the crystal orientation has been treated by Balzar and Popa
7], using the formalism of Bunge [11]. In our case, for texture
epresentation let us introduce the crystal orientation distribu-
ion function f(ψ,θ,φ). This function is normalized in the Euler
pace by

1

8π2

∫∫∫
f (ψ, θ, φ) · dψdθdφ = 1 (8)

The average of a quantity εLab over the crystallite orientation
istribution function is given by εmacro, such that:

macro = 1

8π2

∫∫∫
f (ψ, θ, φ) · εLab(ψ, θ, φ, εa, εb, εc)·dψ·dθ ·
φ = 1

8π2

∫∫∫
f (ψ, θ, φ) · [va(ψ, θ, φ) · εa + vb(ψ, θ, φ) · εb

vc(ψ, θ, φ) · εc] · dψ · dθ · dφ (9)

M
C
M
C

n Ceramic Society 31 (2011) 281–290

hich means:

macro = Va · εa + Vb · εb + Vc · εc (10)

here Vi are defined as

i = 1

8π2

∫∫∫
f (ψ, θ, φ) · vi · dψ · dθ · dφ; i = a, b, c

(11)

ith these equations one can demonstrate that Va + Vb + Vc = 1
n any sample direction (ax, rad, hoop) and for every f(ψ,θ,φ).
he proof is given in Appendix B.

Finally, we must note that the texture coefficients of each
ingle crystal axis (a, b or c) calculated from pole figures are
lready normalized, by virtue of their definition, while those
xtracted from the I-ratio treatment must be normalized to 1
ccording to

n
c (i) = Vc(i)∑

jV
n
c (j)

(12)

hereby Vc are the calculated texture coefficients and i,j run
ver the axial, radial and tangential directions. In the following,
nly normalized texture coefficients will be used and the suffix
omitted for clarity.

. Results

.1. Results of XRD experiments

The measured (XRD) and calibrated I-ratio values for a cel-
ular sample are presented in Table 1. The correspondent I-ratios
easured on a powder are also indicated. A pseudo-Voigt func-

ion was used to fit the peaks, but the peak intensities (and not
he areas) were used, as mentioned above.

.2. Results of neutron diffraction experiment

The complete pole figures for the honeycomb sample, as mea-
ured by neutron diffraction at the Lujan Neutron Scattering
enter, Los Alamos, NM, USA are shown in Fig. 3, see also [3].

The cordierite pole figure for the c-axis, obtained by neutron
iffraction experiments [3], was then approximated by an axially
ymmetric (dependent on θ only) Gaussian texture function I(θ),
easured, def. (1′) 0.86 0.57 0.45 0.65
alibrated, def. (1′) 0.87 0.59 0.47 0.666
easured, def. (1′′) 0.90 0.66 0.53 0.74
alibrated, def. (1′′) 0.90 0.67 0.54 0.75
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ig. 3. Pole figures for the cellular cordierite material, as measured by neutron
he extrusion axis is in the center of the pole figures.

ith �θ = 28.1◦ and I0 = .69 is the random (isotropic) back-
round.

The function I(θ,�θ) was normalized so that Ip = C I and

1

8π2

∫∫∫
C · I (ψ, θ, φ) · dψ · dθ · dφ

= 1

8π2

∫∫∫
Ip (ψ, θ, φ) · dψ · dθ · dφ = 1 (14)

This yielded to C = 1.097. The function Ip is plotted in Fig. 4.
Now, in order to calculate the contribution of the CTE in the

xial (z) direction, we need to evaluate the texture coefficients
iven by the integrals:

Va = 1

8π2

∫ ∫ ∫
Ip (θ,�θ) · va(ψ, θ, φ)3,3 · sin θ · dψ · dθ · dφ = 0.293

Vb = 1

8π2

∫ ∫ ∫
Ip (θ,�θ) · vb(ψ, θ, φ)3,3 · sin θ · dψ · dθ · dφ = 0.293

1
∫ ∫ ∫
Vc =
8π2

Ip (θ,�θ) · vc(ψ, θ, φ)3,3 · sin θ · dψ · dθ · dφ = 0.415

(15)

hich, incidentally, satisfy the condition Va + Vb + Vc = 1.

0 1 2 3

1

2

Ip ( )

ig. 4. The normalized texture function Ip(θ), as determined by neutron diffrac-
ion (θ is in radians).
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action (see also [3]). The texture index is 1.2 (i.e. the global texture is weak).

Analogously, the contribution in the tangential (x) direction
s such that

Va = 1

8π2

∫ ∫ ∫
Ip (θ,�θ) · va(ψ, θ, φ)1,1 · sin θ · dψ · dθ · dφ = 0.354

Vb = 1

8π2

∫ ∫ ∫
Ip (θ,�θ) · vb(ψ, θ, φ)1,1 · sin θ · dψ · dθ · dφ = 0.354

Vc = 1

8π2

∫ ∫ ∫
Ip (θ,�θ) · vc(ψ, θ, φ)1,1 · sin θ · dψ · dθ · dφ = 0.293

(16)

hich again satisfy the condition Va + Vb + Vc = 1.
The contribution to the radial (y) direction is such that

Va = 1

8π2

∫ ∫ ∫
Ip (θ,�θ) · va(ψ, θ, φ)2,2 · sin θ · dψ · dθ · dφ = 0.354

Vb = 1

8π2

∫ ∫ ∫
Ip (θ,�θ) · vb(ψ, θ, φ)2,2 · sin θ · dψ · dθ · dφ = 0.354

Vc = 1

8π2

∫ ∫ ∫
Ip (θ,�θ) · vc(ψ, θ, φ)2,2 · sin θ · dψ · dθ · dφ = 0.293

(17)

ith Va + Vb + Vc = 1.
The texture coefficients shown in Eqs. (14)–(16) obtained
rom the texture function (13) are summarized in Table 2.
One can see that Tangential and Radial coefficients coincide

nd Va = Vb in all lab (XYZ) directions because of the texture
unction symmetry that here depends on θ only·

able 2
exture coefficients Vi calculated from the c-axis texture function deduced from
eutron diffraction measurements.

Va Vb Vc

xial (Z) 0.293 0.293 0.415
angential (X) 0.354 0.354 0.293
adial (Y) 0.354 0.354 0.293
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Texture coefficients Vc as obtained from XRD and ND I-ratio and pole figure.
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. Discussion

.1. Iratio from ND pole figures

In the case of ND measurements, the radial and tangen-
ial directions cannot be distinguished, because of the axial
ymmetry: neutrons take the signal from all walls oriented in
he diffraction condition and therefore the radial and tangen-
ial orientations are averaged together. In particular, this means
hat limitation (2) mentioned above is overcome for the I-ratio
erived from pole figure.

Bearing in mind that the texture coefficient sum equals 1,
e can estimate the axial and radial I-ratios from the one-
imensional distribution function Ip derived from the 0 0 1 pole
gure. To make an analogous calculation to the I-ratio concept,
e have to assume that only the reflections 0 0 1, 1 0 0 and 0 1 0

ontribute to the diffraction signal. In this case, the sum of the
ntensities is given by

sum = Ip(0,�θ) + 2 · Ip
(π

2
,�θ

)
(18)

e then obtain the calibrated Axial and Radial I-ratios as follows,

Iratio(Axial) = Isum − Ip(0,�θ)

Isum
= 0.452

Iratio(Radial) = Isum − Ip((π/2),�θ)

Isum
= 0.774

(19)

One can see that the I-ratio values defined this way satisfy
he condition:

− Iratio(Axial) + 2 · (1 − Iratio(Radial)) = 1 (20)

n the case of X-rays, the cellular geometry yields different
ignals (and different averages) in the radial and tangential direc-
ions, as exemplified in Table 1.

.2. Comparison between XRD and ND I-ratio

In accordance to what we discussed above, the Tangential
-ratio turns out to be higher at the surface (XRD) than on
he average (ND) value, Table 3. Moreover, as outlined before,
he ND values contain the average of radial and tangential sig-
als.
However, this difference can be explained by the different
ay we described the I-ratio for neutrons and X-rays experi-
ents that only coincide if the 0 1 0 and 0 0 1 orientations are

able 3
alibrated I-ratio as obtained from XRD and ND pole figure.

ordierite Iratio Axial Radial Tang

RD 0.47 0.59 0.87
D (001 pole figure) 0.45 0.77 0.77

r
o
C
c
b
r
t
m
i
l

D (I-ratio) 0.49 0.26 0.26
D (pole figure) 0.41 0.29 0.29

he same:

Iratio = I110

I002 + I100
X-rays

Iratio = 2I100

I001 + 2I100
Neutrons

(21)

.3. Comparison between texture coefficients based on
RD and ND data

The Axial texture coefficient Vc obtained from the whole
nformation conveyed by the pole figure, i.e. calculated using the
opa method (as simplified by Bruno [3], Eq. (16)), is Vc = 0.41
ersus 0.47 obtained from XRD I-ratio and 0.49 from ND I-
atio (Tables 3 and 4). Indeed, the latter approximations are both
issing most crystallites oriented in directions other than that

nspected, in accordance with the limitation (3). Table 4 shows
he impact of the approximations done using the different data
ets: note that ND is free of limitation (2) and (3) above, while
RD is not.

.4. Calculation of CTE with texture coefficients

At this point, we can calculate (Fig. 5) the average axial and
adial CTE (and/or the dilation) of an ideally intact material,
sing the texture coefficients of Table 4 and the lattice expansion
ata available in the literature (see [12]). The model set forth in
1] has been used.

One important point must be raised before doing this: the
odel will be used in this context to check the consistency of

he preferred orientation input (I-ratio vs. Pole Figures) and not
o reproduce the dilation curve or to calculate the integrity factor
s a function of temperature, as done in [1,12,13]. Indeed, we
ill see below that hypothetical (but realistic) conditions will
e fixed, and the consistency of the texture coefficients with the
hysical meaning of the simulation will represent the criterion
or the selection of the best input number.

As stated in [1] the cordierite microcracking on cooling
educes the a,b-axis contributions to the bulk CTE. The amount
f this contribution is called the integrity factor: for positive
TE axes a, b, it may decrease from 1 (intact state) to 0 (fully
racked state). As proposed in [1], the integrity factor (IF) can
e estimated by the decrease of the a,b-axes contributions with
espect to the intact state at the stress-free reference tempera-

◦
ure (as high as 1200 C or more). Therefore, according to the
odel described in [1,12], the bulk thermal expansion behavior

s a function of the texture coefficients (Va, Vb, Vc), crystal-
ographic properties (stress-free lattice strains εa,b,c, elasticity
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ig. 5. Comparison between the dilation of a cellular bar as measured by dilatom
n ideal behavior at constant IFa = IFb = 0.6. The texture coefficients Vc were ob
ata (dotted curve) and full c-axis pole figure data (thick dashed curve). Lattice

a,b,c), and integrity (IFa,b,c):

bulk = Va · εa · Ea · IFa + Vb · εb · Eb · IFb + Vc · εc · Ec · IFc
Va · Ea · IFa + Vb · Eb · IFb + Vc · Ec · IFc (22)

e note that the axial and radial expansions could be different
ue to texture as well as to different extent of microcracking.
owever, Fig. 6 shows that the latter was observed to be similar

n both directions, since the shape of the curve of the elastic
odulus (as measured by sonic resonance) vs. temperature is

he same in the radial and axial direction, up to a geometrical
actor, in spite of the different textures. A similar conclusion
as derived in [5] from the comparison of axial and radial

ilation data.

One can notice that the heating curve (bottom) at 1000 ◦C lies
ignificantly below the cooling curve (top). This means that sig-
ificant microcracking is left in the sample even at 1000 ◦C.
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ig. 6. Axial (solid circles) and Radial (open circles) elastic modulus normalized
y max value vs. temperature, as measured by sonic resonance (see [14]) on
eating (red) and cooling (blue). (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of the article.)
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(thick solid line) in the axial (a) and radial (b) directions and the simulations of
d by three methods: I-ratio from XRD data (thin solid curve), I-ratio from ND
from a 5 �m particle size powder were used, as reported in [12].

alculations (see [1]) give an estimate of IFa = IFb = 0.6 at
000 ◦C (see dashed line in Fig. 6).

These considerations imply that for cordierite

1) On cooling from 1200◦ C to 800 ◦C texture is the only factor
influencing the CTE behavior, besides the lattice dilation
dependence on temperature.

2) Microcracking shifts the dilation curve upwards, with
respect to that of the intact material.

The simulated dilation curves were generated on the base of
attice expansion data of a Cordierite powder with 5 �m particle
ize (reported in [12]). Fig. 5 shows the comparison between
he calculated dilation and the measured macroscopic dilation.
ne can see that small differences of the texture coefficient Vc

ould make a dramatic impact on the bulk CTE interpretation
nd prediction.

In fact, two important remarks can be made on the basis of
ig. 5:

(a) The axial and radial dilation simulations differ substantially.
For the radial dilation (Fig. 5b) we cannot definitely state
which of the approximations best suits the experimental
data: both the neutron diffraction I-ratio and Pole Figure data
seem to be consistent with point 2 above. On the other hand,
for the axial dilation, the simulations of the ideally micro-
cracked materials (i.e. with fixed IFa,b = 0.6) give a CTE
higher than the experimental data if the I-ratio data (from

both Neutrons and X-rays) are used. This clearly indicates a
paradox, because the contraction of an ideally microcracked
body must exceed that of a real sample. Indeed, the latter
obviously contains a larger and above all increasing effect
of microcracking upon cooling.
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b) Only the texture coefficients evaluated from ND pole fig-
ures deliver consistent predictions in both the axial and
radial directions. This consistency is confirmed by the fact
that in both the Radial and the Axial directions, the differ-
ence between the simulated and the measured CTE imply
a similar level of microcracking, as suggested by Fig. 6.
As mentioned before, the difference between the simu-
lated and the measured curves increases with decreasing
temperature. This is because in the simulations the micro-
crack level (i.e. the integrity factor) is artificially kept
constant.

A better numerical evaluation of the CTE is important: If we
now the crystallographic texture of a sample/material, we can
xtract from CTE simulations some knowledge about compo-
itional effects and internal micro-strains, and vice-versa. If a
ew factor appears or if one of the input data (e.g., the detailed
nowledge of the sample texture) is missing, then the number
f unknowns becomes too high and the predictions unsound.
lthough a great deal of I-ratio data is available at industrial

evel, a wide scatter of data has also been observed, certainly
ue to the reasons mentioned above, including the ambiguity of
he definition. This implies that the I-ratio is not an exact metric
f the texture. This is certainly one of the reasons why Bubeck
5] found an inconsistency between his Young’s modulus data
nd the CTE calculations.

If texture is the physical quantity affecting the thermo-
echanical properties of cordierite, the I-ratio is, by definition,

nly a rough indicator of it. Even if the trends extracted by empir-
cal treatment [5] can be correct, the number of experimental data
equired to do so is very large or the quantitative agreement is
oor. This approach is therefore not viable if a limited amount
f experimental data is available or if we want to make quantita-
ive predictions of physical quantities (Young’s modulus, CTE,
tc.).

. Conclusions

From the results and the considerations done above, we can
raw the following conclusions:

1) Neutron diffraction provides the most robust texture data,
thanks to the deep penetration power of neutrons (of the
order of several cm). The neutron signal averages over the
whole web thickness and over several cells. It therefore
yields values representative of the whole specimen. More-
over, all orientations are accounted for when averaging by
means of the Popa–Bruno method.

2) Conversely, the shallow penetration of X-rays does not
allow stating sound conclusions about bulk properties. X-ray
derived values would not be comparable with macroscopic
dilation or Young’s modulus data.

3) The I-ratio derived from XRD is a qualitative and practi-

cal, but not a quantitative measurement of texture. It can be
useful for development, quality control, but not for an input
about the crystallographic orientation. For example, model
predictions for common physical properties (CTE, modu-

c

I

n Ceramic Society 31 (2011) 281–290

lus of rupture, Young’s modulus, etc.) based on XRD I-ratio
values could be very uncertain.

4) Full bulk pole figure data yield sound predictions of CTE,
consistent with Young’s modulus.

It is finally recommended to make exclusive use of the pole
gure (or ODF) information contained in neutron diffraction

exture data when inputting models for physical property pre-
ictions.
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ppendix A. Derivation of the relation between I-ratio
nd Vc.

Here we simply assume that the line intensities Ii are propor-
ional to the volume fraction of correspondingly oriented crystals
Vi)

i = Ai · Vi (A.1)

here Ai is to be a constant specific to the design of the XRD
xperiment only and it is independent of the sample structure
r orientation. It is therefore the same for a piece of textured
eramics or for an isotropic powder, if measured on the same
achine.
For a random oriented powder we would have:

0
i = Ai · V 0

i (A.2)

n the case of the 0 0 2 and the 1 1 0 reflections Eq. (A.2)
eads:

0
c = Ac · 1

3
I0
ab = Aab · 2

3
(A.2′)

From which we derive:

c = 3 · I0
c Aab = 3

2
· I0
ab (A.3)

The I-ratio definition becomes:

ratio = Iab

Iab + Ic
= Aab · Vab
Aab · Vab + Ac · Vc = Vab

Vab + 2C · Vc
(A.4)

here Vc, Vab are the volume fractions of oriented domains
the quantities we want to know), and C = Ic

0/Iab
0 = I002

0/I110
0.

e have assumed that for an isotropic material, to which pow-
ers belong, the volume fractions of a,b, and c orientations are
qual, so that Vc = Va = Vb = 1/3 and 2 Vc = Vab. We obtain in this

ase:

powder = I
p
110

I
p
110 + I

p
002

= 1

1 + C
(A.5)
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So that the constant C can be evaluated in terms of the powder
-ratio as

= 1 − Ipowder

Ipowder
(A.6)

ince Vc + Vab = 1 in any condition, we can derive an equation for
he evaluation of Vc in a solid sample from the crushed powder
-ratio.

ratio = 1 − Vc

1 − (1 − 2C)Vc
= 1 − Vc

1 − (2Ipowder − 1/Ipowder) · Vc
(A.7)

Eq. (A.5) has the solution

c = 1 − Iratio

1 − (2Ipowder − 1/Ipowder) · Iratio (A.8)

This demonstrates the statement Eq. (2).
The calibrated values of the I-ratio can be calculated in the

ollowing manner:
If Itheory = 2/3 (Lachman’s definition, Eq. (1′)), by substituting

n eq. (A.7) we get:

0
ratio = 1 − Vc

1 − (Vc/2)
(A.9)

nd therefore

c = 2 · (1 − I0
ratio)

2 − I0
ratio

(A.9′)

Upon substitution of this Vc value in Eq. (A.7) and some
lgebra, we get:

ratio = I0
ratio

(3 − (2/Ipowder)) · I0
ratio + 2 · ((1/Ipowder) − 1)

(A.10)

This equation can be inverted to give the calibrated I-ratio
Iratio

0) as a function of the measured I-ratio (Iratio) as

0
ratio = 2 · ((1/Ipowder) − 1) · Iratio

1 − (3 − (2/Ipowder)) · Iratio (A.10′)

Eqs. (A.10) and (A.10′) satisfy the boundary condi-
ion: Iratio

0 = Iratio, if the measured reference has effectively
powder = 2/3.

Analogously, if Itheory = 3/4 (Bubeck’s use, Eq. (1′′)), by sub-
tituting in Eq. (A.7) we get:
0
ratio = 1 − Vc

1 − (2Vc/3)
(A.11)

θ

T (ψ, θ, φ) →

⎛
⎜⎝

cos(ψ) · cos(φ) − sin(ψ) · cos(θ) · sin(φ) c

− sin(ψ) · cos(φ) − cos(ψ) · cos(θ) · sin(φ) −
sin(θ) · sin(φ) −
n Ceramic Society 31 (2011) 281–290 289

nd therefore

c = 3 · (
1 − I0

ratio

)
3 − 2 · I0

ratio

(A.11′)

Upon substitution of this Vc value in Eq. (A.7) and some
lgebra, we get:

ratio = I0
ratio

(4 − (3/Ipowder)) · I0
ratio + 3 · ((1/Ipowder) − 1)

(A.12)

This equation can be inverted to give the calibrated I-ratio
Iratio

0) as a function of the measured I-ratio (Iratio) as

0
ratio = 3 · ((1/Ipowder) − 1) · Iratio

1 − (4 − (3/Ipowder)) · Iratio (A.12′)

Also in this case, Eqs. (A.12) and (A.12′) satisfy the boundary
ondition: Iratio

0 = Iratio, if the measured reference has effec-
ively Ipowder = 3/4.

ppendix B. Derivation of the relation between pole
gures and Vc

Here we will derive the texture coefficients for orthotropic
rystals with anisotropic properties along the crystal axes:
/= b /= c.
The laboratory coordinate system XYZ and the grain coordi-

ate system xyz are explicitly related by the Euler angles ψ, θ,
· For instance, the transformation of strain from one system to
nother is given by transformation matrix T(ψ, θ, ϕ) made by 3
otations T1, T2, T3 as given below [15]

1(ψ) =

⎛
⎜⎝

cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

⎞
⎟⎠

2(θ) =

⎛
⎜⎝

cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

⎞
⎟⎠

3(ϕ) =

⎛
⎜⎝

1 0 0

0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)

⎞
⎟⎠ (B.1)

So that the total transformation matrix can be written as T(ψ,

, φ) = T1(ψ) · T2(θ) · T3(φ) such that:

os(ψ) · sin(φ) + sin(ψ) · cos(θ) · cos(φ) sin(ψ) · sin(θ)

sin(ψ) · sin(φ) + cos(ψ) · cos(θ) · cos(φ) cos(ψ) · sin(θ)

sin(θ · cos(φ)) cos(θ)

⎞
⎟⎠

(B.2)
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By using Eq. (7), we can easily prove that Eq. (9) holds by
he fact that

(ψ, θ, φ, 0, 01) · εc − ε(ψ, θ, φ, 0, 0, εc) →

⎛
⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎠

(B.3)

For a single grain, the contributions of the c-axis orientation,
otated by ψ, θ, φ in the laboratory system, is given by texture
oefficient vc, which is equal to:

(ψ, θ, φ) · εg(0, 0, 1) · T (ψ, θ, φ)T →

⎛
⎜⎝

sin2(ψ) · sin2(θ)

sin(ψ) · sin2(θ) · cos(

sin(ψ) · sin(θ) · cos(θ

If we now take the polycrystalline average Eq. (11), we can
rite

macro = 1

8π2 ·
∫ 2π

0

∫ π

0

∫ 2π

0
va(ψ, θ, φ) · f (ψ, θ, φ) ·

× sin(θ) dψ dθ dφ · εa + 1

8π2 ·

×
∫ 2π

0

∫ π

0

∫ 2π

0
vb(ψ, θ, φ) · f (ψ, θ, φ) ·

× sin(θ) dψ dθ dφ · εb + 1

8π2 ·

×
∫ 2π

0

∫ π

0

∫ 2π

0
vc(ψ, θ, φ) · f (ψ, θ, φ) ·

× sin(θ) dψ dθ dφ · εc

= 1

8π2 ·
∫ 2π

0

∫ π

0

∫ 2π

0

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ · f (ψ, θ, φ) · ·

× sin(θ) dψ dθ dφ = Va · εa + Vb · εb + Vc · εc
(B.5)

nd demonstrate that the polycrystalline texture coefficients Va,
b, Vc satisfy the rule Va + Vb + Vc = 1 by using Eq. (13):

a+Vb+Vc = 1

8π2

∫∫∫
f (ψ, θ, φ) ·

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ · dψ · dθ·dφ

= 1

8π2

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ ·

∫∫∫
f (ψ, θ, φ) · dψ · dθ·dφ

⎛ ⎞

= 1

8π2
⎜⎝

1 0 0

0 1 0

0 0 1

⎟⎠ (B.6)
n Ceramic Society 31 (2011) 281–290

sin(ψ) · sin2(θ) · cos(ψ) sin(ψ) · sin2(θ) · cos(ψ)

cos2(ψ) · sin2(θ) cos(ψ) · sin(θ) · cos(θ)

cos(ψ) · sin(q) · cos(θ) cos2(θ)

⎞
⎟⎠ (B.4)

This result proves that for any texture function f(ψ, θ, φ) and
ny direction (ax, rad, hoop) the coefficients will follow Eq.
B.6)

For example in the isotropic case f(ψ, θ, φ) = const, a straight-
orward calculation yields

a:= 1

8π2

∫ 2

0

∫ π

0

∫ 2π

0
va(ψ, θ, φ)1,1 · f · sin(θ)dψ dθ dφ

a = 0.333 Vb = 0.333 Vc = 0.333 (B.7)
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